THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Solution of Tutorial Classwork 3

- 1. (a) Note that $U = \{x\} \cup \mathbb{R} \setminus \{x_1, x_2, x_3, \dots\}$ is an open set with $x \in U$. By assumption, there exists $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$. Since $x_n \in U$ if and only if $x_n = x$, we have $x_n = x$ for all $n \geq N$.
	- (b) Consider the function $f : (\mathbb{R}, \text{cocomtable topology}) \to (\mathbb{R}, \text{discrete topology})$ by $f(x) = x$. Suppose $x_n \to x$. Then we have $x_n = x$ for all $n \geq N$. In particular, we have $f(x_n) = f(x)$ for all $n \geq N$. Hence $f(x_n) \to f(x)$ and f is sequentially continuous.

However, it is not continuous since $f^{-1}(\{0\}) = \{0\}$ is not open under the cocountable topology.

- (c) * Pick any open set $V \in \mathfrak{T}_Y$. Suppose $f^{-1}(V)$ is not open. Then there exists point $x \in f^{-1}(V)$ such that for any open set U with $x \in U$, $U \backslash f^{-1}(V) \neq \emptyset$. Let $\{B_n\}_{n \in \mathbb{N}}$ be a local base at x. Choose $b_n \in (\bigcap_{i=1}^n B_i) \backslash f^{-1}(V)$. One can show that $b_n \to x$ (Try). By sequential continuity, we have $f(b_n) \to f(x)$. In particular, we have $f(b_n) \in V$ when n is sufficiently large. This contradicts with the fact that $b_n \notin f^{-1}(V)$.
- 2. (\Rightarrow) Suppose C is a closed nowhere dense set. Let $U = X\setminus C$. Since C is closed, U is open. Moreover, $\overline{X\setminus U} = \overline{C} = C$ and $\overline{U} = X\setminus \mathring{C} = X\setminus \mathring{\overline{C}} = X\setminus \emptyset = X$. Hence $C = \overline{U} \cap \overline{X\setminus U}$. (←) Suppose $C = \overline{U} \cap \overline{X \setminus U}$ for some open set U. Then since U is open, $X \setminus U$ is closed and we

have $C = \overline{U} \cap X \backslash U$. Hence $\hat{\overline{C}} = \hat{C} = (\overline{U} \cap X \backslash U) = \hat{\overline{U}} \cap X \backslash U = \hat{\overline{U}} \cap X \backslash \overline{U} = \emptyset$. 3. (\Rightarrow) Given that X is of second category. Suppose we have a countable collection of open dense set ${D_k}_{k\in\mathbb{N}}$. Then ${X\backslash D_k}_{k\in\mathbb{N}}$ is a countable collection of closed nowhere dense set. Since X is

of second category, by definition we have $X \neq \bigcup_{k\in\mathbb{N}} X\backslash D_k$. Since $\bigcup_{k\in\mathbb{N}} X\backslash D_k = X\backslash \bigcap_{k\in\mathbb{N}} D_k$, we have $\bigcap_{k\in\mathbb{N}} D_k \neq \emptyset$.

(←) Let ${U_k}_{k∈\mathbb{N}}$ be a countable collection of nowhere dense set. Then ${\{\overline{U_k}\}_{k∈\mathbb{N}}}$ is a countable collection of closed nowhere dense set. Hence $\{X\setminus\overline{U_k}\}_{k\in\mathbb{N}}$ is a collection of open dense set. By assumption, we have $X\setminus\bigcup_{k\in\mathbb{N}}\overline{U_k}=\bigcap_{k\in\mathbb{N}}X\setminus\overline{U_k}\neq\emptyset$. Hence $X\neq\bigcup_{k\in\mathbb{N}}\overline{U_k}$ and X is of second category.